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she pattern of the synthesis of a control which is opthimaZ in sped Of resp 

response for non-vibrating systems of a quite general fO?-m With one degree 
of freedom is discussed. The results of an analysis of such systems by the 
maximum principle /I/ axe used; these results are based on constructing 
the switching curve of a relay control /2/. The picture of an approximate 
synthesis in the neighbourhood of a quiescent point (the origin of coordinates) 
obtained for controlled vibrating systems by asymptotic methods is 
complemented by the results obtained /3/. 

1. Statement Qf the problela of synthesis that is opri~3a~ a5 regards 
speed of response for perturbed mm-vibrating systems, l;l. The init;ial cclnrrbl 
pxoblem. Consider the following perturbed controlled dynamic system with one degree of freedom: 

*' = y, y' = f (i. y. U) - Cl"‘ (s, y, U) 1 I1.f) 
(s, y) E G c Rn; s (0) = 2. y (0) = y" 

Here r, y are the system's coordinate and its velocity, i-e, the generalized phase variables, 

AZ is the phase plane, a dot means differentiation with respect to time fZ lo, Tl (T< m); u 
is a scalar c5ntrol piecewise-smooth function such that ]u fi) I< 1; eEit.I. e,i is a sroalf mmeri- 
cad parameter (0 < ccl < fj, md is F are smootli functions of i. y an23 a In the domain under 
consi2eratian ithe pertilrbation function F may be continuously dependent on E), The addition&. 
properties (smoothness, growth, etc.! of the functions f and F, and of the domain G are 
discussed below. It should be noted that the constraints on the control u of the form r-(x, y+ 
e) ~< u < r+ (2, y, e) are reduced to those discussed by the linear change 

u = r 2 (r' + r-f + I/? (r+ - r-) v, u 5 [--1, 11 

(where L‘ is the new control). 
For the perturbed system fl,l) we formulate the problem of defining the law aE the control 

that is optimal regarding speed of response In the for m of the synthesis of ~t(r. gS r)whicb, for 
sufficiently small e> 0, brings the phase point ji,g)EIG to the origin of coordinates <the 
point (0, 0) GZ G) * It is assumed that the solution o f the optima2. synthesis for the unperturbed 
problem (E = If) is known and is in the form of a control. switching curve of a relay character 
/I, 2/. 

Below we discuss the case of non-vibrating systems (non-oscillating objects, /2/), for 
which the unperturbed switching curves have the simplest form: the curve consists of two 
semitrajectories of the unperturbed systerr: (1.11, going to the ox&gin and corresponding to the 
constant extreme values n= 51. In l2i the sufficient conditions are given under which the 
synthesis of the control u(?~ y) r q%imal regarding speed of response in the whole of the 
plane &, or in a certain open domain GC: & which includes the neighbourhood of the origin, 
and has gualitativeiy the same form as that for the simplest dynnmic system (1.1>: 2” = 82, 
1 I( I< 1. Namely, "each oPti.mal control has no morethanone switching, and the switching line 
passes from thesecond to the foilrth quadrant touching the 
(see ,/2/j. 

rr-axis (x2 = y) at the origin" 

/Z/i. 
The sufficient canditions of this picture of the optimal synthesis are as foflows (see 

It is assumed thaz the function f is continuously differentiable with respect to all 
arguments and satisfies th& monotonicity condition with respect to u 
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Further, the inequalities 

f(O, o,+ 1)=f+>U, f(@,%--I)=!-<@ (I/i1 

hold for u = i-1 at the end point .r = Y = 0. 
Conditions (1.3) secure the stopping of the system at the point indicated for a certain 

u = uO= const. 1 u. I< 1 and the behaviour of the switching curve indicated above, and the 
optimal trajectories in the fairly close vicinity of it. 

It is assumed that none of the trajectories of the unperturbed system (1.1) can go to 
infinity or come from it in a finite interval of time (the sufficient conditions can be in 
the form of the uniform Lipschitz conditions with respect to J and y8 see /2/). If the motion 
is considered in a bounded domain G, this requirement becomes superfluous. 

The following more-complicated condition (when the previous "intrinsic" conditions have 
been satisfied) is sufficient for the above behaviour of the optimal synthesis discussed. 
It is required that a function ~(5. y, U) continuously differentiable with respect to J and y, 
should exist such that 

Ycc,, i fq,' - 'F2 - Tfv’-.fv’ < 0, u = 51, (x1 g) f G (r..;i 

It was established in /2/ by using this inequality and the maximum principle, that the 
optimal control ufz, Y)or u(t) is of relay type and has no more than one switching. 

1.2. Constructing an unperturbed switching curve and the pictures of the synthesis. 
Given t:=o, the switching curve n (I, y) of the control U(I. Y) is constructed as follows. 
The upper left branch II and lower right branch n+ of the curve are given by the relations 

n = n- L' n- (1 .r,l 
rlT (2, y) = fz. y: s+ (0, 5. Y) = 0, 
YT (0. s. y) = 0. I3 _> 0) 

Here @ is the curve parameter; the functions 3 (t, sc, Y3), Y' (t, 9, y") are the solutions 
of the unperturbed Cauchy problem (1.1) for u = tl (~5 0, y 3 0) respectively, which go to 
the origin. Under the assumptions made, these solutions can be constructed in the time 
interval t5 IO. 01 during which the system's motion takes place in the domain G. The 
quantity 8 in (1.5) represents the time interval in which the phase point (I. Y) passes to the 
origin along the switching curve for the fixed pi = -1 or u = -+I. Thus, the relations 
(1.51 give the parametric representation of the unperturbed switching curve n(~., y). 

The switching curve can be written in another form, namely, 

n (r, y) = (5, y: YT (z. y) = 0, .T 5 Cl} 

where \YT are the particular solutions of the equations 

(1.6) 

.$ (s, Y: 31) dr = ydy. YG (0. Cl) = 0 

If we can solve the equation YF (s” y) = 0 for 2, 2=ZT {g) or for y, y=$ (2’1, then 
the switching curve can be found in explicit form. Under the assumptions made about the 
smoothness of the function f in the close neighbourhood of the origin, the expression 5= 

"2.P Y* -t 0 (Y"). Y 2 0 holds for the switching curve. 
The curve n(z, y)divides the domain G into two open subdomains G- andG+: G = G- U GT u n. 

In the open subdomains and on parts from the boundaries of IP the optimal control is u=Fi 
respectively, i.e. the optimal synthesis has the form 

LL (-7, y) = --1, (1.7f 
r (.r. y) E G- IJ n- 
u (s, Y) ~: J-1. 
F' (.r. I/) ;- G7 L 11- 

A typical pattern of behaviour of the switching curve and the trajectories for (s. Y)-EG 
[the qualitative picture of the synthesis) are shown in Fig. 1. 

The Bellman function of the problem, that is the response time T = T ix. Yf from an 

arbitrary point(s, Y)E G totheorigincanbe presentedinthe form T = s + 0, where 3 is the 
time of motion fromthe current point (r, y) to the point (E,q) of the interSection of the 
trajectory with the corresponding branch of the switching curve, and @ is the time of motiom 

from the point(E. 11)to the origin along the switching curve defined in accordance with (1.5) 
(see Fig. 1.) The desired quantities T, S. 8. Eand n can be found uniquely from the equations 

T (2. y) = S (3. y) - 0 (.r. y) (1.8) 

L-3 (S, J, y) = E, y+ (S. I, y) = 9 

23 (e, F, I]) = 0, y* (8, 5, 11) = 0 
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The functions xm and y+ are found as in (1.5); 
system (1.8) is reduced to two equations, in S 

Y and in 8. SpeciEic examples of the construction 
of the synthesis pattern and BeUnan's functions 
are discussed below in Section 3. 

In complex applied problems one can use the 
synthesis discussed above as part of the general 
picture of a quasi.-optimal synthesis in the vicinity 
of the origin where, by vixtue of (1.31, the control 
action u determines the system's motion, Far 
example, if far large initial deflections the 
system's motion is oscillatory, then to quench the 
oscillations, that is, tobring thephase point into 
the neighbourhood of the origin (state of equili- 
brium), one can first use an approximate quasi- 
optimal synthesis of the simple form u = '/p(u+ -i- 
u-) - riz (u* - LC-) signy, or any other which cor- 
responds to the model. of a weakly-controlled 

Fig, 1 
oscillation system (see 13, 4/). Then, in the 
domain where u is a suppressing control action, the 

rule (1.7) should be used for more accurate stabilization. 

2. Construction of the optimal synthesis for a perturbed system, 2.1. The 
sufficient conditions of non-oscillation of a perturbed system. When investigating a perturbed 

problem of synthesis, usually all conditions, with the exception of the last condition of type 
(i,4), are naturally extended to the case when E> 0, that is they should be satisfied 
uniformly with respect to e E iO,eol, and this is henceforth assumed. A serious difficulty 
arises with problems of the existence and construction of a smooth function m?(x, y7 u) which 
possesses property (1.4), and the estimate of the domain Ge X IO, e,,lof variables I, y and e; 
for this domain we similarly construct the switching curve n,(x, y) of the optimal control 
Ue (29 Y)? the optimum trajectory r, (I, z", y"), y, (1, 9, y") for 0 < t < T,(x’, y”) and Bellman's 
function T,(x, y) of the perturbed problem. It is to be expected that for an arbitrary smooth 
perturbation function Fjt, y, uf the estimates will lead to the domain G, more narrow than the 
initial domain, i.e. G,cGc R2 with &-+G as e-0. After the problem under consideration 
has been solved in the domain (s, y)~ Ge the perturbed switching curve, the picture of the 
synthesis (optimal trajectories), and Bellman's function can, as discussed, be constructed 
by an analytic method (in powers of E), or a n~ericalmethod;this does not usually present 
any fundamental difficulty. In Section 3 below we discuss examples of specific systems (1.1) 
which are of interest in practice, and for which the constructions discussed are carried out 
and confirmed. 

For arbitrary smooth perturbations, in some cases involving the function f we may succeed 
in a constructive investigation regarding the existence of the function qPe and the estimate of 
G e* 

1) For example let 

f; (.L y, u) > 0, IL = il V (I, y) E G (2.1) 

(see /Z/). 
Then for the unperturbed system tp E 0, and for E> 0 we can take the function 

- KfU. where the parameter p>O is to be determined. 
rp, = 

It follows from inequalities (l-3) 
that for sufficiently small positive p and E, the inequality (1.4) holds in some small 
neighbourhood (I, y)fGe of the origin, In fact, in this case 'T: p! (X,y,kti), will be the 
main term on the left side of (1.41, which ensures the validity of this inequality since, by 
(1.31, we have f(O,O,;l)=j+. By an appropriate choice of small parameters 
remaining terms can be made fairly small in absolute value 

p,e > 0, the 

The domain G, 
V (~7 I./) E G, . 

will be asymptotically large with respect to the parameter E: if we can 
find a smooth function 9(x, y, u) such that 

f2(q!f)v’+yrp,‘-<h<0, u =fl V(x, y)rzG, (2.2) 

Here h is a parameter; naturally, the function (% is constructed on the basis of the 
function f only, that is on the basis of an unperturbed system. Tf, 
f does not depend on 

however, the function 
2, then it is natural to seek the unknown cp in the form (FE= m@, u), 

and then the inequality (2.2) will. take the form 
In particular, let 

f' frp ,f); Q h < 0. 
fzui we can arrive at 

the ineqUality 
then, assuming as above that ee-_ - PY% 



564 

inequality (2.3) will be satisfied in an asymptotically large domain, with tile above estiaatt+,l- 
of the linear dimensions. The validity of (2.3) can beestablishedbyassumlny p== FM. .\I- ! 

2) Let the strict inequality 

nlax 
(x EC. 

[(YCF - r,; + ‘p* (1 -L (f 1 cF)I)l *, - 6 < 0, u = +I 

be satisfied for the known functionrp(x. y, u)in a certain bounded subdomain G,c C 
Then for sufficiently small E>O an inequality of type (1.4) will be satisfied for 

perturbed system (1.1) if the initial function is (FE = '~1 t' (I, y) E Go. 
However, if the domain G is unbounded, we must have additional conditions regarding 

increase in the function F and its derivatives (see f2/). 
For example, for the quasilinear non-vibrating system 

the function p may be taken as constant: qF=(P=-k; then by (2.4), 6= k’- d>tt the 
inequalities of the type (1.4) or (2.4) will be satisfied for system (2.5) in the domain 
G, x lu, %I. where 

then 

with 
like 

E (kF,,’ - F,‘) < 6, u = iI _ 

If the quantities 1 F,‘I and /F,‘Iare uniformly bounded for (r,y)~R, by the constant 
inequality (2.6) is satisfied V (z, y) E R2 when E 5 6 (k -)- I)-'S-1. 

(“:i, 

the 

the 

(2.5) 

(2.ti) 

A' I 

2.2. The construction of a perturbed switching curve. In a domain G, uniformly bounded 
respect to a, the trajectories $(t, 9, Y"), YF (t, S, Y"), which enter the origin, which 
(l.S), specify the desired switching curve &(z,Y)are constructed by simple recurrent 

procedures of successive approximations (by Picard's method /5/), or by expansions in powers 
of a /6, 7/. The functions z+(t.xO,yC).y~(l,xo. y"),in Section 1 (see (1.5)) can be taken as 
initial approximations. The fundamental matrix which is used to construct the solutions of 
the subsequent approximations is obtained from IF,yi by differentiation with respect to 
the parameters x0, Y” * The schemes are substantiated on the basis of the Banach theorem 
on the compression operator /5/, or the Cauchy theorem which uses the method of Poincarg 
majorant functions /6/. 

In an implicit form similar to (1.6), the switching curve is constructed by using par- 
tiCUhrSOlUtiOnS Oftheperturbed system (see Section 1) 

(f + FF) ds = ydy, u = ~1. y 2 0, Y;i (0, 0) I 0 (2.i) 

The function Y: can be constructed on the basis of general solutions of the unperturbed 
problem Y* (J, y) = c whose,differentiation, on the strength of (2.7), leads to the Eqs. 
(c = CT): 

& = YY;& T Y;dy = - a Y;Ff-‘ds = eY:,f (f - EF)-I dy (Y = YF, u = ?=I) (2.b) 

The relation Yz'y - Yzf z U (with respect to z.y) is used in deriving the second 
and third equations in (2.8); the functions f and F are taken for u = Tl. The particular 
solutions of the perturbed system (2.81 _\,'(z,y,c) = 0, which satisfy the conditions AT(U.II. 
0) = 0, together with the general solutions of the unperturbed system Y+ = c yield the desire6 
switching curve II, in the form (1.6). 

A substantiation of perturbation methods used tc construct the switching curve % in the 
domain G, that is asymptotically large with respect to e, requires uniform boundedness 
of the derivatives of the functions f and F with respect to x. y. 

3. Specific mechanical systems. 3.1. A weakly perturbed dynmic system. 

Following Section 2, a switching curve for a non-oscillating object of the form 

5" = u f FF (5, 5', u), U-Q u Q u+, u+ 5 0 (3.1) 

is obtained by integrating the equation 

& dy = y u - eFy ! (u (u -+ ET)), u = ui, y 2 0 (3.2) 

The Cauchy problem (3.2) is reduced to the non-linear integral equation in .T = 5~ (Y): 

(3.3) 

The solutions of Eqs.(3.2) and (3.3) are constructed by expansions in powers of E, 
or by the method of successive approximations. 

The expressions x0+ = I'2 y Z/UT, y20 are taken as the zeroth approximation of the 

switching curves, that is of the functions s,jT, The recurrent schemes will converge 
uniformly in the asymptotically large domain G,: z- 1 /F. y - 1 !I/,, if the function F is 
differentiable with respect to I, and satisfies the Lipschitz condition. 

Below we give some specific examples. 
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1) Let lulgi, F=FO=const; then QZO, and we arrive at the following expressions 

for the switching curve n, and the response time T, when E (f, (< IV (z, y) es G, = R, : 

nc (2, y) = (I, y: = = 7% $1 U*T, y > 0) (3.4) 

T, = S, + Be, S, = -(yA U**tgJ I u*T 

eE = [(y’- 2U*%)/(U;?- ",+"*T)]1'2( 1r*T=17 FFO 

2) If the perturbation consists of a small friction force EF = - E).() y (1 y, where i, is a 

non-negative function then $,rO,V(z, Y) E G,= Ra, Od&<r,and the switching curve is found from 

the equation 

(3.5) 

The switching curves for a particular form of the function h which describes the linear 

and quadratic friction respectively are (~20): 

Ei. = 1 = const, I = - z-‘y - u~l-~ (1 - zy / u’) (3.6) 
Eh = V 1 y 1, \‘ = const, I = 7 I,‘* v-1 In (1 'f f y? / 17) 

The construction of a Bellman function involves the solution of perturbed transcendental 

equations. A corresponding generating solution is the function T(z,y) defined in (3.4); for 

small E>Or the additions are constructed by standard perturbation methods. 
3) Consider the linear perturbation F= Ar. A = ronst. The switching curve and the picture 

of the synthesis for such a system have been well studied, and constructed for arbitrary 
(z,~)ER~.cL=EA when -u-= u+=1. We qualitatively distinguish between oscillating and non- 
oscillating systems, a<0 and a>O. The switching curves and the picture of the synthesis 
are constructed, as discussed in Sections 1 and 2, in an asymptotically large domain G, (z- 

1 i E, y - 1 / 1/E): 

'F~ = - ~Myu, M > 0, u- < u C u+ (3.i) 
G, = (2, y: - Mu* - aMru - E.W (uy) - A < 0, II = uT) 

II, (I, y) = {z. y: -4, a (3 L u / 2)’ + ‘i2 u? ? f’ * y? = IJ, II = u;,y 2 O} 

The switching curveIIEin(3.7)consistsofpartsofellipseswhen A ~0, and of hyperbolas 
when A >0 (for A = 0 it consists of segments of parabolas; the latter case belongs to that 
discussed above). It should be noted that for A >O (see Section 2.11, the condition 
(1.4) is satisfied Y (z. y)=R2. if M= 0, that is (I~ s 0. 

To a first approximation in E, we have the following explicit expression for n,: 

3 = ($1 (2~~)) [I - a~/ i (2~7,'] - 0 (x%J*), y s u 

As mentioned in Section 1.2, in the case of an oscillating object (a < I') , when ~,y are 
large, that is (ZI>AJu/CZ, I YI>Au il/lil, AU= P-- - u , to quench the oscillations we can apply 
a quasi-optimal synthesis of the form u =I/* (II-- 11-)-l/~ AU signy up to the values [z/- Au/a, 

lyl- Au / I/PI, and then use the control synthesis in accordance with (1.7) and (3.7). 

3.2. A quasilinear non-vibrating system. The switching curve II for the unperturbed 
system (2.5) can be represented in the implicit form (1.6), 

n (s. y) = {.z. y: (1 - p&s u -I- p,y U)“’ - (3.8) 
(1 - plp*x ! u - p,y i up = 0, u = IL+, !/ 3 U}, Pl,Z = 
- k*1/= 

As o-+ 0, that is as PI i 0, for the switching curve z+(y) by logarithmic operation the 
first expression in (3.6) which corresponds to F?, = 2k is obtained. The representation of 
IT (5, y) in the parametric form (1.5) is more convenient for further use of the perturbation 
method: 

J (0) = uo-* (pl - p&l L&J? (I, (- 0) - l)- (3.9) 
p, (1, (-Q)-I)1 = 5 

y (0) = u (p, - p2p II, (- 0) - I,(- @)I = y 
u = UT, 0 > 0, I,,? (0) = esp @I,2 Q) 

In accordance with (1.8), to determine the time of optimal response T (5, y), (I, y)~ R2 
we must solve the transcendental equation for the unknown S = S(X,Y), which is reducedtothe 
form 

+ln PIN - h, p&a - hl -=+]n- 
PI - Pa P1- Pz 

Iz, = (62 1 u*) IUJ, (S) + aJz (S)l + (UT I Uf - 1) (pl - p2) 

(3.10) 
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?rz -- (1 / u-+) io,p,r, (S) + q&I, (S)l, p*pz = #2 

fll i= y - p&r + u+pzw-?, a2 = -y -+ p,r - u7ptw-” 

If the function s (z, $/) is found from (3,IO), then the quantities @ = 0 (I, y) and T .:: 
T(r. Y) are simply obtained: 

For system fZ.Sf when E > 0 is sufficiently small, and (r_ y)G Get where the domain C, 
is defined in accor&tnce with (Z.&j, the -perturbed switching curve %(I,& can be represented 
in the form 

xc (0) Es(o) + Exe (0) z= 1? y, (6)s y(S) 4" eYIi, (0) =t y (Xi,) 
x, (e, = ipsf? (0) I, (-4) - p,l r* (0) - pl-11, (0) w {8) $3.1.1) 
J”, (0) = p,p2 II? (0) x, (-- 8) - 11 re (0) - I, (8) CD’ (0) 
r, (0) = l(p* - P?) I, (ia) + E@’ (@)I-* (PI - pzy-1, u = UT 

(the functions z(e), y (@) have been determined in (3.9)). 
The functions @and cfl' are determined below on the basis of a genera3.. solution of Eq.(2,5) 

when u=uT. This solution is presented as a system of integral relations using the impulse 
step function W ff) of an unperturbed system, i.e. 

Let the desired solutions s(f,c, u. f), y (2,c, U,F) in (3.14) be determined, for example, by 
Picard's method. Then 

~=IlJ!iJ~r,u;e)=~R.jr3-i)Fil-,y,li)dr f3.15) 

W=d@"d@. &T 

The parameters cl.? F being iunctions of Q.u and F$ are fauna uniquely from the 
quasilinear system 

Cl =I CJ, (0) I, (- 0) - rpl-x I, (- Q)0' (&i(i) 
c? -I - p1 (UU)-'l -7 Ea)) [([J, - J)$) 1, (a) - &@‘]-i, U = UT 

The parameters cl,z(@.e) from (3.16) in expressions (3.15) are not differentiated with 
respect to 8. System (3.16) satisfies the conditions for the existence and uniqueness of 
the roots cl,? when E > (,I is sufficiently smai?, which are found by successive approximations 
or by Newton's method, 15;'. On substituting the functions @ and @' from (3.15) into (3.1.3?, 
and then into 13.121, we obtain the desired perturbed switching curvein the parametric form 

J = z (I:). U. Ef, y == $ (0. U. E). ii = U'. 8 > (3 

Bellman's functions of problem j”,(s, y) are constructed on the basis of the generating 
solution of (3.101, (3.11), by the perturbation methods discussed, using the picture of optimal 
synthesis for a perturbed system. Here the perturbed solution r(i.c. u.E), y(t,c, u,e) found in 
used. 

For practical purposes, it is important to develop further the approach discussed to the 
study of relay cantrol systems in which the perturbation function F also depends on time and 
other variables, and of multidimension systems consisting of sections of type (1.i) weakly 
coupled to one another, and other more general cases. 
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THE JOINING OF LO&AL EXPANSIONS IN THE THEORY OF NON-LINEAR OSCILLATIONS* 

YU.V, MIKHLIN 

The behavlour of normal modes of oscillation in non-linear conservative 
systems with a finite number of degrees of freedom, when the amplitude 
changes from zero to infinity is studied, In the non-linear case, the 
normal oscillations represent a generalization of the normal oscillations 
of linear conservative systems (see /l/l. It is assumed that the potential 
of a non-linear system is a polynomial of even degree in all positional 
variables. One can construct the trajectories of the normal oscillations 
in configuration space both for sufficiently small amplitude (a quasi- 
linear expansion), and for sufficiently large amplitude, using the fact 
that in these cases the system is close to a uniform system (see /2, 3/). 
The laeal expansions obtained are joined using rational-fractional Padi?' 
representations (see /4/j which enables the behaviour of oscillation modes 
to be followed when the amplitude changes continuously. 

1. An initial conservative system is defined by the following equations of motion 

. . 
ii T llz, (zl. 5?. ( . ‘. &) = 0 (i = 1,1*. . . 17) 

i*.st 

where the potential n (zz.zz. __.~ z,) is a positive definite polynomial in zz, .I .I z, whose lowest 
degree is Wo, and the highest is 2?n. Here and below we assume that the kinetic energy is 
reduced to the form T = ’ 2 (ZP +. . . + q&-y. An equation of this type is often encountered 
problems of the oscillations of non-linear elastic systems. 

After separating one of the coordinates, say .zlr we use the change z1 = CXi, where c = ~(0). 
Clearly, II (0) = 1. In addition, we can aesume without loss of generality that .rr'.(@) = 0. 

Eqs.tl.1) can be rewritten as follows: 

pm--2 . . xi + ~&,.Q,z*, . . . ,qJz%c 0, I’= 2 cw”-‘)(s%, x9> . . . I GJ (1.2) 
6=- fJ 

where I-f'f contains r-th degree terms with respect to the variables in the potential i'(c. I], ;r?. 
. . ., .mj = rl (.2X (.Q), zz (4.. . ., Z, (.7,)f. Here the energy integral has the form 

8X .r;*‘t + v(c,x~,521... *&J= il (1.31 

where h is the energyof the system. Henceforth, we shall assume that the oscillationamplitude 
c = .zl (0) is an independent parameter, and the energy is given by (1.3). Therefore, it is 
convenient to represent the energy h as the sum of terms corresponding to the uniform comyx3nents 
of the potential V, 

ain-2 
I&= s &%, 

If;_* Wf 

On introducing a new independent variable x E .zl and eliminating time from Eqs.fl.2) 
using the energy integral (1.31, we obtain equations for determining the trajectories si = xi(z) 
in the oonfiguratkon space, 

[- Sj’Yx (c, 5, a . ” 3 &J in I‘,, (c, I, . , . , s,)] = 0 

(1=2,3, . . ..n) 
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