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THE APPROXIMATE SYNTHESIS OF PERTURBED NON-VIBRATING
SYSTEMS WITH ONE DEGREE OF FREEDOM*

L.D. AKULENKC

The pattern of the synthesis of a vontrol which is optimal in speed of resp
response for non-vibrating systems of a quite general form with one degree

of freedom is discussed. The results of an analysis of such systems by the
maximum principle /1/ are used; these results are based on constructing

the switching curve of a relay control /2/. The picture of an approximate
synthesis in the neighbourhood of a gquiescent point (the origin of coordinates)
obtained for controlled vibrating systems by asymptotic methods is
complemented by the results obtained /3/.

1. Statement of the problem of synthesis that is optimal as regards
speed of response for perturbed non-vibrating systems. 1.I1. The initial contrel
problem. Consider the following perturbed controlled dynamic system with one Jegree of freedom:

o=y, Y=oy w) el (2 y w) | (1.1
(x WEGCS Ry 2(0) =27, y(U) =y°

Here r, y are the system's ccordinate and its velocity, i.e. the generalized phase variables,
R, is the phase plane, a dot means differentiation with respect to time t= [0, T1{T <o) u
is a scalar control piecewise-smooth function such that jr{N {1 e . ¢l is a small numeri-
cal parameter {0 <{e <€ 1}, and f. F are smooth functions of r. y and u in the domain underx
consideration {the perturbation function F may be continuously dependent on ¢}, The additional
properties {smoothness, growth, etc.) of the functions f and F, and of the domain ¢ are
discussed below. It should be noted that the constraints on the control u of the form r~ (r, y,
g) LuKrr(a, y, E) are reduced to those discussed by the linear change

=ty Yy AV (-, v [, ]
{where v is the new control)}.

For the perturbed system (1.1} we formulate the problem of defining the law of the control
that is optimal regarding speed of response in the form of the synthesis of u{r. ¥, &) which, for
sufficiently small &> 0, brings the phase point (z, y} & & to the origin of coordinates {the
point (0, 0y = ). It is assumed that the solution of the optimal synthesis for the unperturbed
problem (e = 0) is known and is in the form of a centrol switching curve of a relay character
lh 2/,

Below we discuss the case of non-vibrating systems (non-oscillating objects, /2/), for
which the unperturbed switching curves have the simplest form: the curve consists of two
semitrajectories of the unperturbed system (1.1}, going to the origin and corresponding to¢ the
constant extreme values w= --i. In /2/ the sufficient conditions are given under which the
gynthesis of the control u{x, ¥), optimal regarding speed of response in the whole of the
plane R,, or in a certain cpen domain G{Z A, which includes the neighbourhood of the origin,
and has qualitatively the same form as that for the simplest dynamic system (1,1}: 27 = u,
fu i< 1. Namely, "each optimal contrel has nc more than one switching, and the switching line
passes from thesecond to the fourth quadrant touching the x-axis (z, = y) at the origin®
{see /2/).

The sufficient conditions of this picture of the optimal synthesis are as follows [(ses
/2/1. It is assumed that the function £ is continuously differentiable with respect to all
arguments and satisfies the monotonicity condition with respect to u

fl il o w0, (2 =6, Ju <<t (1.2)
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Further, the inequalities

FOO,+ =20 100 —1=/ <0 (1.3

hold for u = -1 at the end point z =y = 0.

Conditions (1.3) secure the stopping of the system at the point indicated for a certain
u = ug==const, |u, |71 and the behaviocur of the switching curve indicated above, and the
optimal trajectories in the fairly close vicinity of it.

It is assumed that none of the trajectories of the unperturbed system (l.1) can go to
infinity or come from it in a finite interval of time (the sufficient conditions can be in
the form of the uniform Lipschitz conditions with respect to r and y, see /2/). If the motion
is considered in a bounded domain G, this requirement becomes superfluous.

The following more-complicated condition (when the previocus "intrinsic" conditions have
been satisfied) is sufficient for the above behaviour of the optimal synthesis discussed.

It is required that a function ¢ (z, y, u) continuously differentiable with respect to « and Y,
should exist such that

¥t e St —of, — <0 u=+1 (o, 6 {1.43

It was established in /2/ by using this inequality and the maximum principle, that the
optimal control u{z, y)or u{f) is of relay type and has no more than one switching.

1.2, Constructing an unperturbed switching curve and the pictures of the synthesis.
Given g = (, the switching curve Il (z, y) of the control u (z, y) is constructed as follows.
The upper left branch IT and lower right branch II* of the curve are given by the relations

0=1 (.5
0¥ (o, y) = {z. y: 2F (O, 2, y) = 0,
YF(O. 2. y) = 0. 8> 0}

Here @ is the curve parameter; the functions 2¥ (¢, 2° ¥°), ¥* ({, 2° ¥°) are the solutions
of the unperturbed Cauchy problem (l1.1) for u = T{(r< 0, y = 0) respectively, which go to
the origin. Under the assumptions made, these solutions can be constructed in the time
interval ¢ = [0. 8] during which the system’'s motion takes place in the domain G. The
quantity © in (1.5) represents the time interval in which the phase point (z, y) passes to the
origin along the switching curve for the fixed u = -1 or = 1. Thus, the relations
(1.5} give the parametric representation of the unperturbed switching curve II(z, p).

The switching curve can be written in another form, namely,

O y={zy¥¥ (. py=0r<s0) {1.6)
where ¥¥ are the particular solutions of the equations
flx, y, F1) de = ydy, ¥%F (0, 0) = 0

If we can solve the equation ¥¥ (z, y) =0 for iz, z=zF(y) or for ¥ y=yF{2), then
the switching curve can be found in explicit form. Under the assumptions made about the
smoothness of the function f in the close neighbourhood of the origin, the expression z =
VfFy? + 0 (¥, y=20 holds for the switching curve,

The curve Il (z, y) divides the domain G into two open subdomains G andG": G = G~ [J G" | IL.
In the open subdomains and on parts from the boundaries of II¥ the optimal contrel is w=711
respectively, i.e. the optimal synthesis has the form

uix, y} = —1, (1.7)
Vi, e 6 -
ur, y) = +1.

Vi y)=6 1"

3 typical pattern of behaviocur of the switching curve and the trajectories for (r. y} =G
{the gualitative picture of the synthesis) are shown in Fig. 1.

The Bellman function of the problem, that is the respomse time 7 = 7 (z, vy} from an
arbitrary point (r, y) & G to the origin canbe presentedinthe form 7 = § + O, where S is the
time of motion from the current point (x, y) to the point (§,m) of the intersection cf the
trajectory with the corresponding branch of the switching curve, and @ is the time of motiom
from the point (E, 0} to the origin along the switching curve defined in accordance with (l.%)
{see Fig. l.) The desired quantities 7, §, 6, Eand v can be found uniquely from the eguations

Tz, ) = S{z. v} + O {z. W) {1.8)

F(8, 2, ) =E yF (S, 2, ¥ =1
(O, B, ) =0, y£ (8, & ) =0
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The functions z¥ and y¥ are found as in (1.5);
system (1.8) is reduced to two equatiens, in §
£ and in @. Specific examples of the construction
of the synthesis pattern and Bellman's functions
are discussed below in Section 3.
&" In complex applied problems one can use the

i @y synthesis discussed above as part of the general
\ picture of a guasi-optimal synthesis in the vicinity
\ of the origin where, by virtue of (1.3}, the control
a action u determines the system's motion., For

system’s motion is oscillatory, then to guench the
oscillations, that is, to bring the phase peoint into
nr the neighbourhood of the origin (state of equili~
brium), one can first use an approximate guasi-
optimal synthesis of the simple form u = Y, (u* -+
u”) — ¥, (ut — u) signy, or any other which cor~
responds to the model of a weakly-controlled
oscillation system {see /3, 4/). Then, in the
domain where u is a suppressing control action, the
rule (1.7) should be used for more accurate stabilization.

,\\ & example, if for large initial deflections the
I

Pig. 1

2. Construction of the optimal synthesis for a perturbed system, 2,1, The
sufficient conditions of non-oscillation of a perturbed system. When investigating a perturbed
problem of synthesis, usually all conditions, with the exception of the last condition of type
{1,4), are naturally extended to the case when ¢ >0, that is they should be satisfied
uniformly with respect to & & [0, &l, and this is henceforth assumed. A serious difficulty
arises with problems of the existence and construction of a smooth function ¢ {z, ¥, ¥) which
possesses property (1.4), and the estimate of the domain G, X [0, g, of variables z, y and &;
for this domain we similarly construct the switching curve Il (z, ¥) of the optimal control
ug (r, ¥), the optimum trajectory . (t, 2° ¥°), Ve (t,2%¥") for 0Lt T (a° ¥°) and Bellman's
function T.{z, y} of the perturbed problem. It is te be expected that for an arbitrary smooth
perturbation function F{z, y, u) the estimates will lead to the domain G more narrow than the
initial domain, i.e. GG EZ G S R, with G — 6 as & (. After the problem under consideration
has been solved in the domain {z, y) = G, the perturbed switching curve, the picture of the
synthesis {optimal trajectories), and Bellman's function can, as discussed, be constructed
by an analytic method {(in powers of ), or a numerical method; this does not usually present
any fundamental difficulty. In Section 3 below we discuss examples of specific systems (1.1)
which are of interest in practice, and for which the constructions discussed are carried out
and confirmed.

For arbitrary smooth perturbations, in some cases involving the function f we may succeed
in a constructive investigation regarding the existence of the function g and the estimate of
Ge -

1) For example let

fx’ (=, Yy u) o 07 uw= 41 v (I\ y) e 6 (21)

{see /2/).

Then for the unperturbed system =0, and for £ >0 we can take the function g =
~ Byu. where the parameter p >0 is to be determined. It follows from inegualities {1.3)
that for sufficiently small positive p and &, the ineguality {1.4) holds in some small
neighbourhood {z, y) & Ge ©of the origin., In fact, in this case F pf (2, ¥, 1), will be the
main term on the left side of (1.4), which ensures the validity of this inequality since, by
(1.3}, we have f{0,0, +1) = f*. By an appropriate choice of small parameters p,e >0, the
remaining terms can be made fairly small in absolute value V {z, yresGe .

The domain & will be asymptotically large with respect to the parameter ¢ if we can

find a smooth function ¢ {, ¥, u) such that
Ple/ Ny +yod <h<<0, u= 11 Vi(z, p) =6, (2.2)

Here h is a parameter; naturally, the function ¢ is constructed on the basis of the
function £ only, that is on the basis of an unperturbed system. If, however, the function
f does not depend on 1z, then it is natural to seek the unknown ¢ in the form ¢~ @ (¥, u),

and then the inegquality {2.2) will take the form Plelf, <h<O
In particular, let f=u; then, assuming as above that g, = — pyu, we can arrive at
the ineguality
—s +(x s Mo + eI Fl+ulgFfy | IR DIKO 2.3)
L 1)EG,

If the quantities | Fy'land | F, |are uniformly bounded for z -~ 1/ e, ¥ ~1/¥e then the
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inequality (2.3) will be satisfied in an asymptotically large domain, with the above estimates
of the linear dimensions. The validity of (2.3) can beestablished by assuming u = ed, M ~ 1.

2) Let the strict inegquality

Jnax e —Nx + 02 (1 L (/@) <L — 6 <0, u= %1 (2.4

be satisfied for the known function g (z. y, u)in a certain bounded subdomain G, ¢

Then for sufficiently small & > 0 an inequality of type (1.4) will be satisfied for the
perturbed system (1.1) if the initial function is @, =g, V (z, y) = G,.

However, if the domain G is unbounded, we must have additional conditions regarding the
increase in the function F and its derivatives (see /2/).

For example, for the guasilinear non-vibrating system

+ 2%z 4 W =ut eF(z, 2, w), k> 0>0 (2.5)

the function ¢ may be taken as constant: ¢ =¢ = —k; then by (2.4), 6=4 — 0?>0. the
inequalities of the type (1.4) or (2.4) will be satisfied for system (2.5) in the domain
G, x 10, &), where

8 (kFy — F') 8, u= +1 2.6
If the guantities | Fy/|and | Fy' are uniformly bounded for (s, y)= Ry by the constant A,

then ineguality (2.6) is satisfied V (z, y) & R, when e<é (k+ 1)W1,

2.2. The construction of a perturbed switching curve. In a domain G, uniformly bounded
with respect to &, the trajectories z7 (¢, 2% ¥°), ys (¢, 2, ¥°), which enter the origin, which
like (1.5), specify the desired switching curve Il (z, y) are constructed by simple recurrent
procedures of successive approximations (by Picard's method /5/), or by expansions in powers
of & /6, 7/. The functions z¥ (1, 2% ). y7 ({, 2°. ¥°),in Section 1 (see (1.5)) can be taken as
initial approximations. The fundamental matrix which is used to construct the solutions of
the subsequent approximations is obtained from s¥,y* by differentiation with respect to
the parameters 2° y°. The schemes are substantiated on the basis of the Banach theorem
on the compression operator /5/, or the Cauchy theorem which uses the method of Poincare
majorant functions /6/.

In an implicit form similar to (1.6), the switching curve is constructed by using par-
ticular solutions of the perturbed system (see Section 1)

(f ~eFydr=ydy, u =51, y=20,¥7(0,0=0 2.7)
The function WF can be constructed on the basis of general solutions of the unperturbed
problem W# (r, y) = ¢ whose differentiation, on the strength of (2.7), leads to the Egs.
(¢ == cF):
de = V.dr — ‘P;,dy = — g Vo Ffldr = e¥.j (f — eF) dy (¥ = ¥*F, u = F1) (2.8)
The relation ¥F'y -~ WFj= 0 (with respect to r,y) is used in deriving the second
and third equations inr (2.8); the functions f and F are taken for u = F1. The particular
solutions of the perturbed system (2.8) AF (z,y,¢) = 0, which satisfy the conditions A (0,0,
0) = 0, together with the general solutions of the unperturbed system ¥+ = ¢ yield the desired
switching curve Il in the form (1.6).
A substantiation of perturbation methods used tc construct the switching curve II. in the
domain G, that is asymptotically large with respect to ¢, requires uniform boundedness
of the derivatives of the functions f and F with respect to .Y,

3. Specific mechanical systems. 3.1. A& weakly perturbed dynamic system.
Following Section 2, a switching curve for a non-oscillating object of the form

i =u+eF(zr, a5, u, wgugu, uvFs0 3.1)
is obtained by integrating the equation
dr ‘dy =y u—ceFy/(uu+ ¢eF), u=u¥, y=290 (3.2)

The Cauchy problem (3.2) is reduced to the non-linear integral equation in z =z (y):

_”“5 FEanw) gy —uF, y=0 (3.3)

T = u-,—LF(zzu)

Zu

The solutions of Egs, (3.2) and (3.3) are constructed by expansions in powers of €,
or by the method of successive approximations.

The expressions z,* = 1, y*/u¥, y = 0 are taken as the zeroth approximation of the
switching curves, that is of the functions z3F. The recurrent schemes will converge
uniformly in the asymptotically large domain Ge:z~1/¢e, y ~1/ ]/s, if the function F is
differentiable with respect to =z, and satisfies the Lipschitz condition.

Below we give some specific examples.
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1) Let |u|<1, F= Fy= const; then ¢, =0, and we arrive at the following expressions
for the switching curve II, and the response time I, when e|Fol<1V(z, ye=Gy= Ry :
Oz p={e y: z=Fhy/u¥ y>0 (3.4)
Te=Sg-+ 8y S, = —(y+ u,10)/ w7

8, = [(v'— 2, T ) — w, TP wF=1F ek,

2) If the perturbation consists of a small friction force eF= —c¢i(jyly, where i is a
non-negative function then ¢, =0,V (2, y) & G = Ry, 0 < e, and the switching curve is found from
the equation
¥

I 22h(fz]) dz
O (z, ) = {IyI—Zu:F+u;()S

ut —ezh (lzh

,Jl%o},u'<u<u* (3.5)

The switching curves for a particular form of the function  which describes the linear
and quadratic friction respectively are (y=z0)

= l=const, z= — I"ly — uTI% (1 — Iy/ u¥F) (3.6)
eh=~v]y|, v=const, x =TV, v 1ln (1 F v y/uF)

The construction of a Bellman function involves the solution of perturbed transcendental
equations. A corresponding generating solution is the function T (z, y) defined in (3.4); for
small >0, the additions are constructed by standard perturbation methods.

3) Consider the linear perturbation F = Az, 4 =const. The switching curve and the picture
of the synthesis for such a system have been well studied, and constructed for arbitrary
(z,y)= R;,a=¢e4 when —u =u*=1We qualitatively distinguish between oscillating and non-
oscillating systems, o« <0 and > 0. The switching curves and the picture of the synthesis
are constructed, as discussed in Sections 1 and 2, in an asymptotically large domain G, (z ~
1/e, y~1/ Ver

Ge= —eMyu, M >0, v L uut (3.7)
G, = |z, ¥t — Mu? — aMru — eM? (uy) — A <0, u=1uTF}
M (2, 9) ={z, y: =Yyo (z+ ula)+ Yy wra+1,y2 =0, u=uty =0}

The switching curve I in(3.7)consists of parts of ellipseswhen 4 < 0, and of hyperbolas
when A >0 (for A= 0 it consists of segments ot parabolas; the latter case belongs to that
discussed above). It should be noted that for 4 >0 (see Section 2.1), the condition
(1.4) is satisfied YV (z, y) & R,, if M =0, that is ¢, = 0.

To a first approximation in ¢, we have the following explicit expression for I,:

z= (@ @) 1 — eyt @uT P - 0@y, y=0

As mentioned in Section 1.2, in the case of an oscillating object (x < V), When z,y are
large, that is |z|> du/a, |¥|> du/V[a], du=u*—u, to quench the oscillations we can apply
a quasi-optimal synthesis of the form u=1/, (W = u) =1/, Au signy up to the values |z]|~ Au/gq,
ly|~ Au/Vial, and then use the control synthesis in accordance with (1.7) and (3.7)

3.2. A gquasilinear non-vibrating system. The switching curve Il for the unperturbed
system (2.5) can be represented in the implicit form (1.6),

I (z,y) = {z. gy (1 — pipax /w4 pry U — (3.8)
A —ppor/u—py/wpn =0, u=u¥, y20}, p2=

—kx V=

As o — 0, that is as p, 1 0, for the switching curve z¥F (y) by logarithmic operation the
first expression in (3.6) which corresponds to eA = 2k is obtained. The representation of
I (z, y) in the parametric form (1.5) is more convenient for further use of the perturbation
method:

7(8) = ue™ (py — p) [p2 (I} (— O) — 1) — (3.9)
il (—O) =] ==z

y©) =ulpy—p)? U (—0)—1I,(—0) =

u=u¥ 020 I,(0) =exp (p. 0)

In accordance with (1.8), to determine the time of optimal response T (z, ¥), (7, ¥) = R,
we must solve the transcendental equation for the unknown S = § (z, y), which is reduced to the
form

1 phe—h 1, pha—iu
P) —In =P = ln—— (3.10)
= (0® / u®) lo,]; (S) + szz (S)] + @F /ut —1) (py— p2)
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Ry = (47 uty loypdy (S) + owpely (Y, pips = o°
0 5= Y — P + UFP07E, Oy o= Y 4+ pi7 — uFp ™t

If the function § (z, ¥) is found from (3.10), then the gquantities © = O (1, y) and 7T =
T (2. ¥) are simply obtained:

. 1 pyhg— By
:S—.L * R v A———— == '22 2 4
T Le, @ 7 In ——— E==1\/k (3.11)

For system (2.5) when & >0 is sufficiently small, and {z, ) = G.. where the domain G,
is defined in accordance with (2.6}, the perturbed switching curve {lg {z, ¥} can be represented
in the form

2 {0) = 2 (8) + eX, (@} = ox Y (B)y=y 0y + Y, {8) == ¥ {312)
Xe (0) = [pods (0) 1} (~0) — py] Ty (8) — py7l, (8) @' (8) {3.13)
Yo (0) = pp: 12 (B) 1) (= 8) — 1] T\ (8) — 1, () O (8)

e (8) = [(py — p2) 12 (©) + @ (O) (py — po)7%, u = u¥F

{the functions z (0), y {0) have been determined in (3.9)).

The functions @ and & are determined below on the basis of a general solution of Eq.(2.5)
when u = u¥., This solution is presented as a system of integral relations using the impulse
step function W {i) of an unperturbed system, i.e.

i
2ty = (£} - o fo (1) 4 -(-;"7 4 S Wit—1)Flz, y.u} dr £{3.14)
g8

i
y{O)y=cprds (1) + copad s (1) E‘S W @ —1)F(x. gy u)dr
0

W =, — Tl (py = p)7 u = o7
{o = (e ) = Co, (2, y) & Gp)

Let the desired solutions z {{, ¢, u. &), ¥y (¢, ¢, u, &8} in (3.14) be determined, for example, by
Picard's method. Then

&

Q=W (0. e )=\ W (@ —1)F (z, yu)dr {3.15)
2

@ = 9B 88, u = uv

The parameters ty9, being functions of O, uw and e, are found uniquely from the
quasilinear system

0y = 0ol (0) 1) (— ©) — epy™ I, (— ©) D (3.16)
e 7=~y (w4 e®) [py = pp) 1o (0) — e®TH u o= u¥

The parameters ¢y, (©.eg) from (3,16} in expressions (3.15) are not differentiated with
respect to 6. System (3.16) satisfies the conditions for the existence and unigueness of
the roots ¢, when & >0 is sufficiently small, which are found by successive approximations
or by Newton's method, /$/. On substituting the functions © and @ from (3.15) into (3.13),
and then into {3.12), we obtain the desired perturbed switching curvein the parametric form

r=x{8 u. e}, y =B, ushu=uvr, 820

Bellman's functions of problem 7T, {(z.y) are constructed on the basis of the generating
solution of (3,10), (3.11}, by the perturbaticn methods discussed, using the picture of optimal
synthesis for a perturbed system. Here the perturbed solution z (f.¢.u.e),y(t, ¢, u,e) found is
used,

For practical purposes, it is important to develop further the approach discussed to the
study of relay control systems in which the perturbation function F also depends on time and
other variables, and of multidimension systems consisting of sections of type {(1.1) weakly
coupled to one another, and other more general cases.
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THE JOINING OF LOCAL EXPANSIONS IN THE THEORY OF NON-LINEAR OSCILLATIONS *

YU.V. MIKHLIN

The behaviour of normal modes of oscillation in non-linear congervative
systems with a finite number of degrees of freedom, when the amplitude
changes from zero to infinity is studied. In the non-linear case, the
normal oscillations represent a generalization of the normal oscillations
of linear conservative systems (see /1/). It is assumed that the potential
of a non-linear system is 3 polynomial of even degree in all positional
variables, One can construct the trajectories of the normal oscillations
in configuration space both for sufficiently small amplitude (a quasi-
linear expansion), and for sufficiently large amplitude, using the fact
that in these cases the system is ¢lose to a uniform system (see /2, 3{).
The local expansions obtained are joined using rational-fractional Pade
representations (see /4/) which enables the behaviour of oscillation modes
to be followed when the amplitude changes continuously,

1. an initial conservative system is defined by the following equations of motion

5"+ Bz 200 )y =0 =12....n) 1.H

where the potential Tl {z;. 2, ....2z;) is a positive definite polynomial in z, ..., 2, whose lowest
degree is two, and the highest is 2m. Here and below we assume that the kinetic energy is
reduced to the form T =1, (u® +. ..+ 2%, An equation of this type is often encountered

problems of the coscillations of non-linear elastic systems.,
After separating one of the coordinates, say 2, we use the change z,= c¢z;, where ¢ = 3 (0.
Clearly, 2,{0)= 1. 1In addition, we can assume without loss of generality that o {() = 0.
Egs. (1.1) can be rewritten as follows:

am—2

B V(e mn o) =0 Ve S CTE(ay, 2. 7) (1.2)
k=g
where 1" contains r~th degree terms with respect to the variables in the potential V (e, 7y, a3,
<oy Ip) = 11 (25 (24}, %2 {02}, . ., 25 (%)) Here the energy integral has the form
n
Sat V(e antn.. . a)="h (1.3)

i=1
where h is the energy of the system. Henceforth, we shall assume that the oscillation amplitude
¢ =z, (0) is an independent parameter, and the energy is given by (1.3). Therefore, it is
convenient to represent the energy h as the sum of texms corresponding to the uniform components
of the potential V,
m—~2
Frees 2 ckfék (1.4)
On introducing a new independent variable y == z; and eliminating time from Egs. (1.2)

using the energy integral (1.3}, we obtain equations for determining the trajectories gz, == z; {2)
in the configuration space,

20 [h—V{e s 200 r )] ~ 1+ 3 (@:)2] (1.5)
i=2
[—2Veler o ovaiy)+ Vagler oy L 2,)] =0
([=273y... 972)
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